Home
 Support Vector Machines
 SVM Reviews
 SVM Books
 SVM Software
 Pattern Recognition
 Optimum Hyperplane
 SVM Regression
 ν-SVM
 SVM Statistics
 Machine Learning
 MLnet
 NEuroNet
 EvoNet
 UCI Repository
 List 1
 List 2
 List 3
 Wikipedia
 Repository
 ROCKIT
 Weka
 C4.5
 YALE
 Tutorials
SVM - Support Vector Machines
ν-SVM
  1. B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, New support vector algorithms, Neural Comput. 2000, 12, 1207-1245.
  2. C. C. Chang and C. J. Lin, Training ν-support vector classifiers: Theory and algorithms, Neural Comput. 2001, 13, 2119-2147.
  3. C. C. Chang and C. J. Lin, Training ν-support vector regression: Theory and algorithms, Neural Comput. 2002, 14, 1959-1977.
  4. I. Steinwart, On the optimal parameter choice for ν-support vector machines, IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1274-1284.
  5. P. H. Chen, C. J. Lin, and B. Schölkopf, A tutorial on ν-support vector machines, Appl. Stoch. Models. Bus. Ind. 2005, 21, 111-136.
 Search "SVM" in:
 PubMed
 PubMed Central
 CiteSeer
 Scirus
 BioChem Press
 Search "Support Vector" in:
 PubMed
 PubMed Central
 CiteSeer
 Scirus
 BioChem Press
 Journals
 JMLR
 IEJMD
 Bioinformatics
 Nucleic Acids Research
 BioMed Central
 Literature Databases
 PubMed
 PubMed Central
 CiteSeer
 Search Engines
 DOAJ
 Scirus
 OJOSE



https://support-vector-machines.org/
The "SVM - Support Vector Machines" Portal is part of the OIRI network
All rights reserved - Copyright © 2005 Ovidiu Ivanciuc