Home
 Support Vector Machines
 SVM Reviews
 SVM Books
 SVM Software
 Pattern Recognition
 Optimum Hyperplane
 SVM Regression
 ν-SVM
 SVM Statistics
 Machine Learning
 MLnet
 NEuroNet
 EvoNet
 UCI Repository
 List 1
 List 2
 List 3
 Wikipedia
 Repository
 ROCKIT
 Weka
 C4.5
 YALE
 Tutorials
SVM - Support Vector Machines
ν-SVM
  1. B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett, New support vector algorithms, Neural Comput. 2000, 12, 1207-1245.
  2. C. C. Chang and C. J. Lin, Training ν-support vector classifiers: Theory and algorithms, Neural Comput. 2001, 13, 2119-2147.
  3. C. C. Chang and C. J. Lin, Training ν-support vector regression: Theory and algorithms, Neural Comput. 2002, 14, 1959-1977.
  4. I. Steinwart, On the optimal parameter choice for ν-support vector machines, IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 1274-1284.
  5. P. H. Chen, C. J. Lin, and B. Schölkopf, A tutorial on ν-support vector machines, Appl. Stoch. Models. Bus. Ind. 2005, 21, 111-136.
 Search "SVM" in:
 PubMed
 PubMed Central
 CiteSeer
 Google Scholar
 Google
 Scirus
 BioChem Press
 Search "Support Vector" in:
 PubMed
 PubMed Central
 CiteSeer
 Google Scholar
 Google
 Scirus
 BioChem Press
 Journals
 JMLR
 IEJMD
 Bioinformatics
 Nucleic Acids Research
 BioMed Central
 Literature Databases
 PubMed
 PubMed Central
 CiteSeer
 Search Engines
 DOAJ
 Scirus
 OJOSE



http://www.support-vector-machines.org/
The "SVM - Support Vector Machines" Portal is part of the OIRI network
All rights reserved - Copyright © 2005 Ovidiu Ivanciuc