|
SVM - Support Vector Machines |
Kernel-based techniques (such as support vector machines, Bayes point machines, kernel principal component analysis, and Gaussian processes) represent a major development in machine learning algorithms. Support vector machines (SVM) are a group of supervised learning methods that can be applied to classification or regression. Support vector machines represent an extension to nonlinear models of the generalized portrait algorithm developed by Vladimir Vapnik. The SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis (VC) dimension introduced by Vladimir Vapnik and Alexey Chervonenkis.
- Review: Applications of Support Vector Machines in Chemistry, Rev. Comput. Chem. 2007, 23, 291-400
|
|
|