Home
 Support Vector Machines
 SVM Reviews
 SVM Books
 SVM Software
 Pattern Recognition
 Optimum Hyperplane
 SVM Regression
 ν-SVM
 SVM Statistics
 Machine Learning
 MLnet
 NEuroNet
 EvoNet
 UCI Repository
 List 1
 List 2
 List 3
 Wikipedia
 Repository
 ROCKIT
 Weka
 C4.5
 YALE
 Tutorials
SVM - Support Vector Machines

Kernel-based techniques (such as support vector machines, Bayes point machines, kernel principal component analysis, and Gaussian processes) represent a major development in machine learning algorithms. Support vector machines (SVM) are a group of supervised learning methods that can be applied to classification or regression. Support vector machines represent an extension to nonlinear models of the generalized portrait algorithm developed by Vladimir Vapnik. The SVM algorithm is based on the statistical learning theory and the Vapnik-Chervonenkis (VC) dimension introduced by Vladimir Vapnik and Alexey Chervonenkis.


  • Review: Applications of Support Vector Machines in Chemistry, Rev. Comput. Chem. 2007, 23, 291-400

 Search "SVM" in:
 PubMed
 PubMed Central
 CiteSeer
 Scirus
 BioChem Press
 Search "Support Vector" in:
 PubMed
 PubMed Central
 CiteSeer
 Scirus
 BioChem Press
 Journals
 JMLR
 IEJMD
 Bioinformatics
 Nucleic Acids Research
 BioMed Central
 Literature Databases
 PubMed
 PubMed Central
 CiteSeer
 Search Engines
 DOAJ
 Scirus
 OJOSE



https://support-vector-machines.org/
The "SVM - Support Vector Machines" Portal is part of the OIRI network
All rights reserved - Copyright © 2005 Ovidiu Ivanciuc